Analytical Solutions for Fractional Differential Equations Using a General Conformable Multiple Laplace Transform Decomposition Method
نویسندگان
چکیده
In this paper, a new analytical technique is proposed for solving fractional partial differential equations. This method referred to as the general conformal multiple Laplace transform decomposition method. It combination of and Adomian The main theoretical results using are presented. addition, illustrative examples provided demonstrate validity symmetry presented
منابع مشابه
The analytical solutions for Volterra integro-differential equations within Local fractional operators by Yang-Laplace transform
In this paper, we apply the local fractional Laplace transform method (or Yang-Laplace transform) on Volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. The iteration procedure is based on local fractional derivative operators. This approach provides us with a convenient way to find a solution ...
متن کاملthe analytical solutions for volterra integro-differential equations within local fractional operators by yang-laplace transform
in this paper, we apply the local fractional laplace transform method (or yang-laplace transform) on volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. the iteration procedure is based on local fractional derivative operators. this approach provides us with a convenient way to find a solution ...
متن کاملModified Laplace decomposition method for fractional Volterra-Fredholm integro-differential equations
This paper successfully applies the Adomian decomposition and the modified Laplace Adomian decomposition methods to find the approximate solution of a nonlinear fractional Volterra-Fredholm integro-differential equation. The reliability of the methods and reduction in the size of the computational work give these methods a wider applicability. Also, the behavior of the solution can be formall...
متن کاملMulti-step conformable fractional differential transform method for solving and stability of the conformable fractional differential systems
In this article, the multi-step conformable fractional differential transform method (MSCDTM) is applied to give approximate solutions of the conformable fractional-order differential systems. Moreover, we check the stability of conformable fractional-order L\"{u} system with the MSCDTM to demonstrate the efficiency and effectiveness of the proposed procedure.
متن کاملInverse Laplace transform method for multiple solutions of the fractional Sturm-Liouville problems
In this paper, inverse Laplace transform method is applied to analytical solution of the fractional Sturm-Liouville problems. The method introduces a powerful tool for solving the eigenvalues of the fractional Sturm-Liouville problems. The results how that the simplicity and efficiency of this method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2023
ISSN: ['0865-4824', '2226-1877']
DOI: https://doi.org/10.3390/sym15020389